The $pH$ of $0.1$ $M$ solution of cyanic acid $(HCNO)$ is $2.34$. Calculate the ionization constant of the acid and its degree of ionization in the solution.
$c=0.1 \,M$
$pH =2.34$
$-\log \left[ H ^{+}\right]= pH$
$-\log \left[ H ^{+}\right]=2.34$
$\left[ H ^{+}\right]=4.5 \times 10^{-3}$
Also.
$\left[ H ^{+}\right]=c \alpha$
$4.5 \times 10^{-3}=0.1 \times \alpha$
$\frac{4.5 \times 10^{-3}}{0.1}=\alpha$
$\alpha=45 \times 10^{-3}=.045$
Then
$K_{a}=c \alpha^{2}$
$=0.1 \times\left(45 \times 10^{-3}\right)^{2}$
$=202.5 \times 10^{-6}$
$=2.02 \times 10^{-4}$
At $298\,K$ a $0.1 \,M $ $C{H_3}COOH$ solution is $ 1.34\%$ ionized. The ionization constant ${K_a}$ for acetic acid will be
A $0.1\,N $ solution of an acid at room temperature has a degree of ionisation $ 0.1$ . The concentration of $O{H^ - }$ would be
${K_{C{H_3}COOH}} = 1.9 \times {10^{ - 5}}$. Calculate $pH$ at end point in titration of $0.1$ $M$ $C{H_3}COOH$ and $0.1$ $M$ $NaOH$.
Given the two concentration of $HCN (K_a = 10^{-9})$ are $0.1\,M$ and $0.001\,M$ respectively. What will be the ratio of degree of dissociation ?
The concentration of $[{H^ + }]$ and concentration of $[O{H^ - }]$ of a $ 0.1$ aqueous solution of $2\%$ ionised weak acid is [Ionic product of water $ = 1 \times {10^{ - 14}}]$