The $pH$ of $0.1$ $M$ solution of cyanic acid $(HCNO)$ is $2.34$. Calculate the ionization constant of the acid and its degree of ionization in the solution.
$c=0.1 \,M$
$pH =2.34$
$-\log \left[ H ^{+}\right]= pH$
$-\log \left[ H ^{+}\right]=2.34$
$\left[ H ^{+}\right]=4.5 \times 10^{-3}$
Also.
$\left[ H ^{+}\right]=c \alpha$
$4.5 \times 10^{-3}=0.1 \times \alpha$
$\frac{4.5 \times 10^{-3}}{0.1}=\alpha$
$\alpha=45 \times 10^{-3}=.045$
Then
$K_{a}=c \alpha^{2}$
$=0.1 \times\left(45 \times 10^{-3}\right)^{2}$
$=202.5 \times 10^{-6}$
$=2.02 \times 10^{-4}$
At $25\,^oC$, the dissociation constant of $CH_3COOH$ and $NH_4OH$ in aqueous solution are almost the same. The $pH$ of a solution $0.01\, N\, CH_3COOH$ is $4.0$ at $25\,^oC$. The $pH$ of $0.01\, N\, NH_4OH$ solution at the same temperature would be
At $298\,K$ a $0.1 \,M $ $C{H_3}COOH$ solution is $ 1.34\%$ ionized. The ionization constant ${K_a}$ for acetic acid will be
A weak base $MOH$ of $0.1\,N$ concentration shows a $pH$ value of $9$ . What is the percentage degree of ionization of the base ? .......$\%$
When $CO_2$ dissolves in water, the following equilibrium is established
$C{O_2} + 2{H_2}O\, \rightleftharpoons {H_3}{O^ + } + HCO_3^ - $
for which the equilibrium constant is $3.8 \times 10^{-7}$ and $pH = 6.0$. The ratio of $[HCO_3^- ]$ to $[CO_2]$ would be :-
The ionization constant of $HF$, $HCOOH$ and $HCN$ at $298\, K$ are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and $4.8 \times 10^{-9}$ respectively. Calculate the ionization constants of the corresponding conjugate base.