The $pH$ of $0.1$ $M$ solution of cyanic acid $(HCNO)$ is $2.34$. Calculate the ionization constant of the acid and its degree of ionization in the solution.
$c=0.1 \,M$
$pH =2.34$
$-\log \left[ H ^{+}\right]= pH$
$-\log \left[ H ^{+}\right]=2.34$
$\left[ H ^{+}\right]=4.5 \times 10^{-3}$
Also.
$\left[ H ^{+}\right]=c \alpha$
$4.5 \times 10^{-3}=0.1 \times \alpha$
$\frac{4.5 \times 10^{-3}}{0.1}=\alpha$
$\alpha=45 \times 10^{-3}=.045$
Then
$K_{a}=c \alpha^{2}$
$=0.1 \times\left(45 \times 10^{-3}\right)^{2}$
$=202.5 \times 10^{-6}$
$=2.02 \times 10^{-4}$
Calculate $pH$ of solution of $6.0$ $gm$ acetic acid in $250$ $mL$. ( ${K_a} = 1.8 \times {10^{ - 5}}$ at $298$ $K$ ) ( $C = 12, H = 1, O = 16$ )
What is $[{H^ + }]$ of a solution that is $0.01\,M$ in $HCN$ and $0.02\,M$ in $NaCN$ $({K_a}$for $HCN = 6.2 \times {10^{ - 10}})$
${K_{C{H_3}COOH}} = 1.9 \times {10^{ - 5}}$. Calculate $pH$ at end point in titration of $0.1$ $M$ $C{H_3}COOH$ and $0.1$ $M$ $NaOH$.
Equal volumes of three acid solutions of $pH \,3, 4$ and $5$ are mixed in a vessel. .........$ \times 10^{-4} \,M$ will be the $H^+$ ion concentration in the mixture ?
For a weak acid $HA,$ Ostwald's dilution law is represented by the equation