$\sec \theta=1,$ then $\theta=\ldots \ldots \ldots$
$0$
$45$
$60$
$90$
$\sec \theta=1 \, \therefore \cos \theta=1 .$ But, $\cos 0=1 \, \therefore \theta=0$
$\operatorname{cosec} \theta=\frac{2}{\sqrt{3}},$ then $\theta=\ldots \ldots \ldots \ldots$
Prove that,
$\frac{\tan A }{1 \sec A } – \frac{\tan A }{1 \sec A } = 2 \operatorname{cosec} A$
$a \sin \theta=3$ and $a \cos \theta=4,$ then $a=\ldots \ldots \ldots . . .$ (where, $a > 0)$
$\cot \theta=\frac{a}{b},$ then $\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}=\ldots \ldots \ldots$
$\sec \theta=\frac{13}{5},$ then $\cos \theta=\ldots \ldots \ldots \ldots$
Confusing about what to choose? Our team will schedule a demo shortly.