3 and 4 .Determinants and Matrices
hard

$$f(x)=\left| {\begin{array}{*{20}{c}} {{{\sin }^2}x}&{ - 2 + {{\cos }^2}x}&{\cos 2x} \\ {2 + {{\sin }^2}x}&{{{\cos }^2}x}&{\cos 2x} \\ {{{\sin }^2}x}&{{{\cos }^2}x}&{1 + \cos 2x} \end{array}} \right| ,x \in[0, \pi]$$

Then the maximum value of $f(x)$ is equal to $.....$

A

$6$

B

$7$

C

$8$

D

$9$

(JEE MAIN-2021)

Solution

$\left| {\begin{array}{*{20}{c}} { – 2}&{ – 2}&0 \\ 2&0&{ – 1} \\ {{{\sin }^2}x}&{{{\cos }^2}x}&{1 + \cos 2x} \end{array}} \right| (\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2} \,and \,\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3})$

$-2\left(\cos ^{2} \mathrm{x}\right)+2\left(2+2 \cos 2 \mathrm{x}+\sin ^{2} \mathrm{x}\right)$

$4+4 \cos 2 \mathrm{x}-2\left(\cos ^{2} \mathrm{x}-\sin ^{2} \mathrm{x}\right)$

$\mathrm{f}(\mathrm{x})=4+\underbrace{2 \cos 2 \mathrm{x}}_{\max =1}$

$\mathrm{f}(\mathrm{x})_{\max }=4+2=6$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.