3 and 4 .Determinants and Matrices
normal

If $a,b,c$ are distinct and rational numbers then $\left| {\begin{array}{*{20}{c}}
{\left( {{a^2} + {b^2} + {c^2}} \right)}&{ab + bc + ca}&{ab + bc + ca}\\
{ab + bc + ca}&{\left( {{a^2} + {b^2} + {c^2}} \right)}&{\left( {bc + ca + ab} \right)}\\
{ab + bc + ca}&{\left( {ab + bc + ca} \right)}&{\left( {{a^2} + {b^2} + {c^2}} \right)}
\end{array}} \right|$ is always 

A

zero

B

Rational $\&$ Positive

C

Rational $\&$ Negative

D

Irrational and Positive

Solution

$\left|\begin{array}{lll}{a} & {b} & {c} \\ {b} & {c} & {a} \\ {c} & {a} & {b}\end{array}\right|\left|\begin{array}{lll}{a} & {b} & {c} \\ {b} & {c} & {a} \\ {c} & {a} & {b}\end{array}\right|$

$=\left|\begin{array}{lll}{a} & {b} & {c} \\ {b} & {c} & {a} \\ {c} & {a} & {b}\end{array}\right|^{2}=$ Rational and Positive

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.