$5$ charges each of magnitude $10^{-5} \,C$ and mass $1 \,kg$ are placed (fixed) symmetrically about a movable central charge of magnitude $5 \times 10^{-5} \,C$ and mass $0.5 \,kg$ as shown in the figure given below. The charge at $P_1$ is removed. The acceleration of the central charge is [Given, $\left.O P_1=O P_2=O P_3=O P_4=O P_5=1 m , \frac{1}{4 \pi \varepsilon_0}=9 \times 10^9\right]$

210913-q

  • [KVPY 2009]
  • A

    $9 \,ms ^{-2}$ upwards

  • B

    $9 \,ms ^{-2}$ downwards

  • C

    $4.5 \,ms ^{-2}$ upwards

  • D

    $4.5 \,ms ^{-2}$ downwards

Similar Questions

Two identical conducting spheres with negligible volume have $2.1\, nC$ and $-0.1\, nC$ charges, respectively. They are brought into contact and then separated by a distance of $0.5 \,m$. The electrostatic force acting between the spheres is $.......... \, \times 10^{-9} \,N$

[Given : $4 \pi \varepsilon_{0}=\frac{1}{9 \times 10^{9}} SI$ unit]

  • [JEE MAIN 2021]

Two charges $ + 4e$ and $ + e$ are at a distance $x$ apart. At what distance, a charge $q$ must be placed from charge $ + e$ so that it is in equilibrium

According to Coulomb's Law, which is correct relation for the following diagram?

Total charge $-\,Q$ is uniformly spread along length of a ring of radius $R$. A small test charge $+q$ of mass m is kept at the centre of the ring and is given a gentle push along the axis of the ring.

$(a) $ Show that the particle executes a simple harmonic oscillation.

$(b)$ Obtain its time period.

In the given figure two tiny conducting balls of identical mass $m$ and identical charge $q$ hang from non-conducting threads of equal length $L$. Assume that $\theta$ is so small that $\tan \theta \approx \sin \theta $, then for equilibrium $x$ is equal to