Value of $\frac{{4\sin {9^o}\sin {{21}^o}\sin {{39}^o}\sin {{51}^o}\sin {{69}^o}\sin {{81}^o}}}{{\sin {{54}^o}}}$ is equal to
$\frac{1}{16}$
$\frac{1}{32}$
$\frac{1}{8}$
$\frac{1}{4}$
If $k = \sin \frac{\pi }{{18}}\,.\,\sin \frac{{5\pi }}{{18}}\,.\,\sin \frac{{7\pi }}{{18}},$ then the numerical value of $k$ is
If $\cos \theta = \frac{3}{5}$ and $\cos \phi = \frac{4}{5},$ where $\theta $ and $\phi $ are positive acute angles, then $\cos \frac{{\theta - \phi }}{2} = $
Prove that $=\frac{\sin 5 x-2 \sin 3 x+\sin x}{\cos 5 x-\cos x}=\tan x$
$\sqrt {\frac{{1 - \sin A}}{{1 + \sin A}}} = $
The value of $\frac{{\tan {{70}^o} - \tan {{20}^o}}}{{\tan {{50}^o}}} = $