In a triangle $ABC,$ the value of $\sin A + \sin B + \sin C$ is
$4\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$
$4\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$
$4\cos \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$
$4\cos \frac{A}{2}\sin \frac{B}{2}\cos \frac{C}{2}$
If $A, B, C$ are acute positive angles such that $A + B + C = \pi $ and $\cot A\,\cot \,B\,\cot \,C = K,$ then
$2 \sin \left(\frac{\pi}{22}\right) \sin \left(\frac{3 \pi}{22}\right) \sin \left(\frac{5 \pi}{22}\right) \sin \left(\frac{7 \pi}{22}\right) \sin \left(\frac{9 \pi}{22}\right)$ is
If $a\tan \theta = b$, then $a\cos 2\theta + b\sin 2\theta = $
$1 + \cos \,{56^o} + \cos \,{58^o} - \cos {66^o} = $
Let $S=\left\{x \in(-\pi, \pi): x \neq 0, \pm \frac{\pi}{2}\right\}$. The sum of all distinct solutions of the equation $\sqrt{3} \sec x+\operatorname{cosec} x+2(\tan x-\cot x)=0$ in the set $S$ is equal to