In a triangle $ABC,$ the value of $\sin A + \sin B + \sin C$ is
$4\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$
$4\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$
$4\cos \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$
$4\cos \frac{A}{2}\sin \frac{B}{2}\cos \frac{C}{2}$
$\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{3\pi }}{7} =$
Number of values of $ x \in \left[ {0,2\pi } \right]$ satisfying the equation $cotx - cosx = 1 - cotx. cosx$
$\tan 3A - \tan 2A - \tan A = $
If $x + y + z = {180^o},$ then $\cos 2x + \cos 2y - \cos 2z$ is equal to
The value of $ \cos ^{3}\left(\frac{\pi}{8}\right) \cdot \cos \left(\frac{3 \pi}{8}\right)+\sin ^{3}\left(\frac{\pi}{8}\right) \cdot \sin \left(\frac{3 \pi}{8}\right)$ is