${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $
$3{\log _2}7$
$1 - 3{\log _3}7$
$1 - 3{\log _7}2$
None of these
The value of $\sqrt {(\log _{0.5}^24)} $ is
If ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ then $x$ belongs to the interval
Let $x, y$ be real numbers such that $x>2 y>0$ and $2 \log (x-2 y)=\log x+\log y$ Then, the possible value(s) of $\frac{x}{y}$
If ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0,$ then $x$ is equal to
$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)$ is equal to