${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $
$3{\log _2}7$
$1 - 3{\log _3}7$
$1 - 3{\log _7}2$
None of these
If ${a^2} + 4{b^2} = 12ab,$ then $\log (a + 2b)$ is
$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)$ is equal to
Let $S$ be the sum of the digits of the number $15^2 \times 5^{18}$ in base $10$. Then,
The value of ${\log _2}.{\log _3}....{\log _{100}}{100^{{{99}^{{{98}^{{.^{{.^{{{.2}^1}}}}}}}}}}}$ is
If ${a^x} = b,{b^y} = c,{c^z} = a,$ then value of $xyz$ is