If ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ then $x$ belongs to the interval
$\left( {1,\,\,2} \right]$
$\left( { - \infty ,\,2} \right]$
$\left[ {2, + \,\infty } \right)$
None of these
If ${\log _7}2 = m,$ then ${\log _{49}}28$ is equal to
Let $\quad \sum \limits_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c$, where $a, b, c \in Z$ and $e=\sum \limits_{n=0}^{\infty} \frac{1}{n!}$ Then $a^2-b+c$ is equal to $................$.
The number of real values of the parameter $k$ for which ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ with real coefficients will have exactly one solution is
If ${1 \over {{{\log }_3}\pi }} + {1 \over {{{\log }_4}\pi }} > x,$ then $x$ be
Logarithm of $32\root 5 \of 4 $ to the base $2\sqrt 2 $ is