If ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ then $x$ belongs to the interval
$\left( {1,\,\,2} \right]$
$\left( { - \infty ,\,2} \right]$
$\left[ {2, + \,\infty } \right)$
None of these
The value of ${(0.05)^{{{\log }_{_{\sqrt {20} }}}(0.1 + 0.01 + 0.001 + ......)}}$ is
The interval of $x$ in which the inequality ${5^{(1/4)(\log _5^2x)}}\, \geqslant \,5{x^{(1/5)(\log _5^x)}}$
The value of $(0.16)^{\log _{2.5}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots . to \infty\right)}$ is equal to
Let $n$ be the smallest positive integer such that $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \geq 4$. Which one of the following statements is true?
Solution set of equation
$\left| {1 - {{\log }_{\frac{1}{6}}}x} \right| + \left| {{{\log }_2}x} \right| + 2 = \left| {3 - {{\log }_{\frac{1}{6}}}x + {{\log }_{\frac{1}{2}}}x} \right|$ is $\left[ {\frac{a}{b},a} \right],a,b, \in N,$ then the value of $(a + b)$ is