Gujarati
Hindi
Basic of Logarithms
hard

Let $\log _a b=4, \log _c d=2$, where $a, b, c, d$ are natural numbers. Given that $b-d=7$, the value of $c-a$ is

A

$1$

B

$-1$

C

$2$

D

$-2$

(KVPY-2009)

Solution

(a)

We have, $\log _a b=4$, $\log _c d=2, a, b, c, d \in N$

$\Rightarrow b=a^4, d=c^2$

$\Rightarrow b-d=7=a^4-c^2$

$\Rightarrow 7=\left(a^2+c\right)\left(a^2-c\right)$

$\Rightarrow 7 \times 1=\left(a^2+c\right)\left(a^2-c\right)$

$\therefore a^2+c=7 \text { and } a^2-c=1$

$\text { On solving, we get } a=2 \text { and } c=3$

$\therefore c-a=3-2=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.