${a^{m{{\log }_a}n}} = $
${a^{mn}}$
${m^n}$
${n^m}$
એકપણ નહીં
(c) ${a^{m{{\log }_a}n}} = {a^{{{\log }_a}{n^m}}} = {n^m}$.
જો $x + \sqrt {({x^2} + 1)} = a,$ તો $x =$
${a^{1/3}} + {a^{ – 1/3}}$ નો સંમેય કારક અવયવ મેળવો.
$\sqrt {[12 – \sqrt {(68 + 48\sqrt 2 )} ]} = $
જો $x \ne 0 $ તો ${\left( {{{{x^l}} \over {{x^m}}}} \right)^{({l^2} + lm + {m^2})}}$${\left( {{{{x^m}} \over {{x^n}}}} \right)^{({m^2} + nm + {n^2})}}{\left( {{{{x^n}} \over {{x^l}}}} \right)^{({n^2} + nl + {l^2})}}=$
$\sqrt {(3 + \sqrt 5 )} – \sqrt {(2 + \sqrt 3 )} = $
Confusing about what to choose? Our team will schedule a demo shortly.