${a^{m{{\log }_a}n}} = $
${a^{mn}}$
${m^n}$
${n^m}$
એકપણ નહીં
જો ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ તો $x = .. . .$
જો ${x^y} = {y^x},$ તો ${(x/y)^{(x/y)}} = {x^{(x/y) - k}},$ કે જ્યાં $k = . . . . $
જો ${\left( {{2 \over 3}} \right)^{x + 2}} = {\left( {{3 \over 2}} \right)^{2 - 2x}},$ તો $x =$
${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $
${{{{[4 + \sqrt {(15)} ]}^{3/2}} + {{[4 - \sqrt {(15)} ]}^{3/2}}} \over {{{[6 + \sqrt {(35)} ]}^{3/2}} - {{[6 - \sqrt {(35)} ]}^{3/2}}}} = $