$\sqrt {(3 + \sqrt 5 )} - \sqrt {(2 + \sqrt 3 )} = $

  • A

    $\sqrt {(5/2)} + \sqrt {(3/2)} $

  • B

    $\sqrt {(5/2)} - \sqrt {(3/2)} $

  • C

    $\sqrt {(5/2)} - \sqrt {(1/2)} $

  • D

    $\sqrt {(3/2)} - \sqrt {(1/2)} $

Similar Questions

જો $x = {{\sqrt 5 + \sqrt 2 } \over {\sqrt 5 - \sqrt 2 }},y = {{\sqrt 5 - \sqrt 2 } \over {\sqrt 5 + \sqrt 2 }},$ તો $3{x^2} + 4xy - 3{y^2} = $

${{\sqrt {(5/2)} + \sqrt {(7 - 3\sqrt 5 )} } \over {\sqrt {(7/2)} + \sqrt {(16 - 5\sqrt 7 )} }}=$

$9\sqrt 3 + 11\sqrt 2 $ નું ઘનમૂળ મેળવો.

આપલે પૈકી $\root 3 \of 9 ,\root 4 \of {11} ,\root 6 \of {17} $ કઈ સંખ્યા મહતમ છે ?

જો $a = \sqrt {(21)} - \sqrt {(20)} $ અને $b = \sqrt {(18)} - \sqrt {(17),} $ તો