$\left| {(1 + i)\frac{{(2 + i)}}{{(3 + i)}}} \right| = $
$ - \frac{1}{2}$
$\frac{1}{2}$
$1$
$ - 1$
If ${z_1} = a + ib$ and ${z_2} = c + id$ are complex numbers such that $|{z_1}| = |{z_2}| = 1$ and $R({z_1}\overline {{z_2}} ) = 0,$ then the pair of complex numbers ${w_1} = a + ic$ and ${w_2} = b + id$ satisfies
If ${z_1},{z_2},{z_3}$ are complex numbers such that $|{z_1}|\, = \,|{z_2}|\, = $ $\,|{z_3}|\, = $ $\left| {\frac{1}{{{z_1}}} + \frac{1}{{{z_2}}} + \frac{1}{{{z_3}}}} \right| = 1\,,$ then${\rm{ }}|{z_1} + {z_2} + {z_3}|$ is
Let $Z$ and $W$ be complex numbers such that $\left| Z \right| = \left| W \right|,$ and arg $Z$ denotes the principal argument of $Z.$
Statement $1:$ If arg $Z+$ arg $W = \pi ,$ then $Z = -\overline W $.
Statement $2:$ $\left| Z \right| = \left| W \right|,$ implies arg $Z-$ arg $\overline W = \pi .$
Let $z$ be complex number satisfying $|z|^3+2 z^2+4 z-8=0$, where $\bar{z}$ denotes the complex conjugate of $z$. Let the imaginary part of $z$ be nonzero.
Match each entry in List-$I$ to the correct entries in List-$II$.
List-$I$ | List-$II$ |
($P$) $|z|^2$ is equal to | ($1$) $12$ |
($Q$) $|z-\bar{z}|^2$ is equal to | ($2$) $4$ |
($R$) $|z|^2+|z+\bar{z}|^2$ is equal to | ($3$) $8$ |
($S$) $|z+1|^2$ is equal to | ($4$) $10$ |
($5$) $7$ |
The correct option is:
The set of all $\alpha \in R$, for which $w = \frac{{1 + \left( {1 - 8\alpha } \right)z}}{{1 - z}}$ is a purely imaginary number, for all $z \in C$ satisfying $\left| z \right| = 1$ and ${\mathop{\rm Re}\nolimits} \,z \ne 1$, is