$arg\,(5 - \sqrt 3 i) = $
${\tan ^{ - 1}}\frac{5}{{\sqrt 3 }}$
${\tan ^{ - 1}}\left( { - \,\frac{5}{{\sqrt 3 }}} \right)$
${\tan ^{ - 1}}\frac{{\sqrt 3 }}{5}$
${\tan ^{ - 1}}\left( { - \frac{{\sqrt 3 }}{5}} \right)$
The argument of the complex number $ - 1 + i\sqrt 3 $ is ............. $^\circ$
Let $\bar{z}$ denote the complex conjugate of a complex number $z$ and let $i=\sqrt{-1}$. In the set of complex numbers, the number of distinct roots of the equation
$\bar{z}-z^2=i\left(\bar{z}+z^2\right)$ is. . . . . .
If $\sqrt 3 + i = (a + ib)(c + id)$, then ${\tan ^{ - 1}}\left( {\frac{b}{a}} \right) + $ ${\tan ^{ - 1}}\left( {\frac{d}{c}} \right)$ has the value
If $z = x + iy$ satisfies $|z|-2=0$ and $|z-i|-|z+5 i|=0$, then
The conjugate of complex number $\frac{{2 - 3i}}{{4 - i}},$ is