The values of $z$for which $|z + i|\, = \,|z - i|$ are
Any real number
Any complex number
Any natural number
None of these
Which of the following are correct for any two complex numbers ${z_1}$ and ${z_2}$
Let $z$ be a complex number (not lying on $X$-axis) of maximum modulus such that $\left| {z + \frac{1}{z}} \right| = 1$. Then
For a non-zero complex number $z$, let $\arg ( z )$ denote the principal argument with $-\pi<\arg ( z ) \leq \pi$. Then, which of the following statement (s) is (are) $FALSE$ ?
$(A)$ $\arg (-1- i )=\frac{\pi}{4}$, where $i =\sqrt{-1}$
$(B)$ The function $f: R \rightarrow(-\pi, \pi]$, defined by $f(t)=\arg (-1+i t)$ for all $t \in R$, is continuous at all points of $R$, where $i=\sqrt{-1}$
$(C)$ For any two non-zero complex numbers $z_1$ and $z_2$, $\arg \left(\left(\frac{z_1}{z_2}\right)-\arg \left(z_1\right)+\arg \left(z_2\right)\right.$ is an integer multiple of $2 \pi$.
$(D)$ For any three given distinct complex numbers, $z_1, z_2$ and $z_3$, the locus of the point $z$ satisfying the condition $\arg \left(\frac{\left( z - z _1\right)\left( z _2- z _3\right)}{\left( z - z _3\right)\left( z _2- z _1\right)}\right)=\pi$, lies on a straight line
${\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2}$ is equal to
The conjugate of $\frac{{{{(2 + i)}^2}}}{{3 + i}},$ in the form of $a + ib$, is