4-1.Complex numbers
hard

If $z$ and $\omega$ are two complex numbers such that $|z \omega|=1$ and $\arg (z)-\arg (\omega)=\frac{3 \pi}{2}$, then $\arg \left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$ is:

(Here arg(z) denotes the principal argument of complex number $z$ )

A

$\frac{3 \pi}{4}$

B

$-\frac{\pi}{4}$

C

$-\frac{3 \pi}{4}$

D

$\frac{\pi}{4}$

(JEE MAIN-2021)

Solution

As $|z \omega|=1$

$\Rightarrow|z|=r$, then $|\omega|=\frac{1}{r}$

Let $\arg (z)=q$

$\therefore \arg (\omega)=\left(\theta-\frac{3 \pi}{2}\right)$

$\text { So, } z=r e^{1 \theta}$

$\Rightarrow \bar{z}=r e^{i(-\theta)}$

$\omega=\frac{1}{r} e^{i\left(\theta-\frac{3 \pi}{2}\right)}$

Now, consider

$\frac{1-w \bar{z} \omega}{1+3 \bar{z} \omega}=\frac{1-2 e^{\left(-\frac{3 \pi}{2}\right)}}{1-3 e^{\left(-\frac{3 \pi}{2}\right)}}=\left(\frac{1-2 i}{1+3 i}\right)$

$\therefore \text { prin } \arg \left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$

$=\operatorname{prin} \arg \left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$

$=\left(-\frac{1}{2}(1+i)\right)$

$=-\left(\pi-\frac{\pi}{4}\right)=\frac{-3 \pi}{4}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.