If $z$ and $\omega$ are two complex numbers such that $|z \omega|=1$ and $\arg (z)-\arg (\omega)=\frac{3 \pi}{2}$, then $\arg \left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$ is:
(Here arg(z) denotes the principal argument of complex number $z$ )
$\frac{3 \pi}{4}$
$-\frac{\pi}{4}$
$-\frac{3 \pi}{4}$
$\frac{\pi}{4}$
Find the modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$
The sum of amplitude of $z$ and another complex number is $\pi $. The other complex number can be written
Argument and modulus of $\frac{{1 + i}}{{1 - i}}$ are respectively
Let $z$ be a purely imaginary number such that ${\mathop{\rm Im}\nolimits} (z) < 0$. Then $arg\,(z)$ is equal to
$\left| {\frac{1}{2}({z_1} + {z_2}) + \sqrt {{z_1}{z_2}} } \right| + \left| {\frac{1}{2}({z_1} + {z_2}) - \sqrt {{z_1}{z_2}} } \right|$ =