If ${z_1},{z_2},{z_3}$be three non-zero complex number, such that ${z_2} \ne {z_1},a = |{z_1}|,b = |{z_2}|$ and $c = |{z_3}|$ suppose that $\left| {\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}} \right| = 0$, then $arg\left( {\frac{{{z_3}}}{{{z_2}}}} \right)$ is equal to
$arg{\left( {\frac{{{z_2} - {z_1}}}{{{z_3} - {z_1}}}} \right)^2}$
$arg\left( {\frac{{{z_2} - {z_1}}}{{{z_3} - {z_1}}}} \right)$
$arg{\left( {\frac{{{z_3} - {z_1}}}{{{z_2} - {z_1}}}} \right)^2}$
$arg\left( {\frac{{{z_3} - {z_1}}}{{{z_2} - {z_1}}}} \right)$
Let $z$ be a complex number. Then the angle between vectors $z$ and $ - iz$ is
The inequality $|z - 4|\, < \,|\,z - 2|$represents the region given by
Number of complex numbers $z$ such that $\left| z \right| + z - 3\bar z = 0$ is equal to
The complex numbers $sin\ x + i\ cos\ 2x$ and $cos\ x\ -\ i\ sin\ 2x$ are conjugate to each other, for
If $z = 1 - \cos \alpha + i\sin \alpha $, then $amp \ z$=