$\{ x \in R:|x - 2|\,\, = {x^2}\} = $

  • A

    $\{ -1, 2\}$

  • B

    $\{1, 2\}$

  • C

    $\{ -1, -2\}$

  • D

    $\{1, -2\}$

Similar Questions

In a cubic equation coefficient of $x^2$ is zero and remaining coefficient are real has one root $\alpha = 3 + 4\, i$ and remaining roots are $\beta$ and $\gamma$ then $\alpha \beta \gamma$ is :-

Let $f(x)=x^4+a x^3+b x^2+c$ be a polynomial with real coefficients such that $f(1)=-9$. Suppose that $i \sqrt{3}$ is a root of the equation $4 x^3+3 a x^2+2 b x=0$, where $i=\sqrt{-1}$. If $\alpha_1, \alpha_2, \alpha_3$, and $\alpha_4$ are all the roots of the equation $f(x)=0$, then $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ is equal to. . . . . .

  • [IIT 2024]

The population of cattle in a farm increases so that the difference between the population in year $n+2$ and that in year $n$ is proportional to the population in year $n+1$. If the populations in years $2010, 2011$ and $2013$ were $39,60$ and $123$,respectively, then the population in $2012$ was

  • [KVPY 2014]

If $\alpha$ and $\beta$ are the distinct roots of the equation $x^{2}+(3)^{1 / 4} x+3^{1 / 2}=0$, then the value of $\alpha^{96}\left(\alpha^{12}-\right.1) +\beta^{96}\left(\beta^{12}-1\right)$ is equal to:

  • [JEE MAIN 2021]

Product of real roots of the equation ${t^2}{x^2} + |x| + \,9 = 0$

  • [AIEEE 2002]