$\{ x \in R:|x - 2|\,\, = {x^2}\} = $

  • A

    $\{ -1, 2\}$

  • B

    $\{1, 2\}$

  • C

    $\{ -1, -2\}$

  • D

    $\{1, -2\}$

Similar Questions

The locus of the point $P=(a, b)$ where $a, b$ are real numbers such that the roots of $x^3+a x^2+b x+a=0$ are in arithmetic progression is

  • [KVPY 2011]

If ${x^2} + px + 1$ is a factor of the expression $a{x^3} + bx + c$, then

  • [IIT 1980]

The product of all the rational roots of the equation $\left(x^2-9 x+11\right)^2-(x-4)(x-5)=3$, is equal to :

  • [JEE MAIN 2025]

The sum of integral values of $a$ such that the equation $||x\ -2|\ -|3\ -x||\ =\ 2\ -a$ has a solution

The least integral value $\alpha $ of $x$ such that $\frac{{x - 5}}{{{x^2} + 5x - 14}} > 0$ , satisfies

  • [JEE MAIN 2013]