$\{ x \in R:|x - 2|\,\, = {x^2}\} = $

  • A

    $\{ -1, 2\}$

  • B

    $\{1, 2\}$

  • C

    $\{ -1, -2\}$

  • D

    $\{1, -2\}$

Similar Questions

If $|x - 2| + |x - 3| = 7$, then $x =$

Equation $\frac{3}{{x - {a^3}}} + \frac{5}{{x - {a^5}}} + \frac{7}{{x - {a^7}}} = 0,a > 1$ has

If $|{x^2} - x - 6| = x + 2$, then the values of $x$ are

Sum of the solutions of the equation $\left[ {{x^2}} \right] - 2x + 1 = 0$ is (where $[.]$ denotes greatest integer function)

If $\alpha $, $\beta$, $\gamma$  are roots of ${x^3} - 2{x^2} + 3x - 2 = 0$ , then the value of$\left( {\frac{{\alpha \beta }}{{\alpha  + \beta }} + \frac{{\alpha \gamma }}{{\alpha  + \gamma }} + \frac{{\beta \gamma }}{{\beta  + \gamma }}} \right)$ is