$\{ x \in R:|x - 2|\,\, = {x^2}\} = $
$\{ -1, 2\}$
$\{1, 2\}$
$\{ -1, -2\}$
$\{1, -2\}$
यदि $x$ वास्तविक है तथा $k = \frac{{{x^2} - x + 1}}{{{x^2} + x + 1}}$ हो, तब
समीकरण
$x+1-2 \log _{2}\left(3+2^{x}\right)+2 \log _{4}\left(10-2^{-x}\right)=0$
के मूलों का योग है
यदि $x$ वास्तविक है, तो व्यंजक $\frac{{{x^2} + 14x + 9}}{{{x^2} + 2x + 3}}$ के अधिकतम एवं न्यूनतम मान होंगे
समीकरण $\mathrm{e}^{\sin x}-2 \mathrm{e}^{-\sin x}=2$ के हलों की संख्या है
मान लें कि एक द्वियातीय बहुपद $P(x)=a x^2+b x+c$ के धनात्मक गुणांक क्रम से $a, b, c$ अकगणितीय श्रेढ़ी $(arithmatic\,progression)$ में है. यदि $P(x)=0$ के पूर्णाक मूल $\alpha$ और $\beta$ हों, तो $\alpha+\beta+\alpha \beta$ का मान होगा