If the equation $\frac{1}{x} + \frac{1}{{x - 1}} + \frac{1}{{x - 2}} = 3{x^3}$ has $k$ real roots, then $k$ is equal to -
$2$
$3$
$4$
$6$
For what value of $\lambda$ the sum of the squares of the roots of ${x^2} + (2 + \lambda )\,x - \frac{1}{2}(1 + \lambda ) = 0$ is minimum
The solution of the equation $2{x^2} + 3x - 9 \le 0$ is given by
If$\frac{{2x}}{{2{x^2} + 5x + 2}} > \frac{1}{{x + 1}}$, then
The number of real roots of the equation, $\mathrm{e}^{4 \mathrm{x}}+\mathrm{e}^{3 \mathrm{x}}-4 \mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{\mathrm{x}}+1=0$ is
If $|x - 2| + |x - 3| = 7$, then $x =$