$^n{C_r} + {2^n}{C_{r - 1}}{ + ^n}{C_{r - 2}} = $
$^{n + 1}{C_r}$
$^{n + 1}{C_{r + 1}}$
$^{n + 2}{C_r}$
$^{n + 2}{C_{r + 1}}$
एक व्यक्ति $X$ के $7$ मित्र हैं, जिनमें $4$ महिलाएँ हैं तथा $3$ पुरूष हैं, उसकी पत्नी $Y$ के भी $7$ मित्र हैं, जिनमें $3$ महिलाएँ तथा $4$ पुरुष हैं। यह माना गया कि $X$ तथा $Y$ का कोई उभयनिष्ठ (common) मित्र नहीं है। तो उन तरीकों की संख्या जिनमें $X$ तथा $Y$ एक साथ $3$ महिलाओं तथा $3$ पुरूषों को पार्टी पर बुलाएं कि $X$ तथा $Y$ प्रत्येक कें तीन-तीन मित्र आयें, है:
$^n{P_r}{ \div ^n}{C_r}$ =
यदि $35$ सेबों को $3$ लड़कों के बीच इस प्रकार वितरित किया जाता है कि प्रत्येक लड़का कितने भी सेब ले सकता है, तब इस प्रकार के वितरण के कुल प्रकारों की संख्या है
अंग्रेजी वर्णमाला के दिये गये $10$ अक्षरों में से $5$ अक्षरों को लेकर कितने शब्द बनाये जा सकते हैं जबकि कम से कम एक अक्षर की पुनरावृत्ति हो
यदि $P(n,r) = 1680$ और $C(n,r) = 70$, तब $69n + r! = $