Gujarati
6.Permutation and Combination
normal

$\left( {\begin{array}{*{20}{c}}n\\{n - r}\end{array}} \right)\, + \,\left( {\begin{array}{*{20}{c}}n\\{r + 1}\end{array}} \right)$का मान होगा, यदि $0 \le r \le (n - 1)$

A

$\left( {\begin{array}{*{20}{c}}n\\{r - 1}\end{array}} \right)$

B

$\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right)$

C

$\left( {\begin{array}{*{20}{c}}n\\{r + 1}\end{array}} \right)$

D

$\left( {\begin{array}{*{20}{c}}{n + 1}\\{r + 1}\end{array}} \right)$

Solution

$\left( \begin{array}{l}\,\,\,n\,\\\,n – r\end{array} \right)$+$\left( \begin{array}{l}\,\,\,n\,\\r + 1\end{array} \right)$ = $^n{C_{n – r}}{ + ^n}{C_{r + 1}}$

$ \Rightarrow {\,^n}{C_r}\, + {\,^n}{C_{r + 1}}$ = $^{n + 1}{C_{r + 1}} = \left( {\begin{array}{*{20}{c}}{n + 1}\\{r + 1}\end{array}} \right)$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.