$\frac{{{C_0}}}{1} + \frac{{{C_2}}}{3} + \frac{{{C_4}}}{5} + \frac{{{C_6}}}{7} + ....$=
$\frac{{{2^{n + 1}}}}{{n + 1}}$
$\frac{{{2^{n + 1}} - 1}}{{n + 1}}$
$\frac{{{2^n}}}{{n + 1}}$
None of these
The value of $\sum\limits_{n = 1}^\infty {\frac{{^n{C_0} + ...{ + ^n}{C_n}}}{{^n{P_n}}}} $ is
What is the sum of the coefficients of ${({x^2} - x - 1)^{99}}$
The value of $4 \{^nC_1 + 4 . ^nC_2 + 4^2 . ^nC_3 + ...... + 4^{n - 1}\}$ is :
The sum of all the coefficients in the binomial expansion of ${({x^2} + x - 3)^{319}}$ is
If ${C_0},{C_1},{C_2},.......,{C_n}$ are the binomial coefficients, then $2.{C_1} + {2^3}.{C_3} + {2^5}.{C_5} + ....$ equals