$\mathrm{b}=1+\frac{{ }^1 \mathrm{C}_0+{ }^1 \mathrm{C}_1}{1 !}+\frac{{ }^2 \mathrm{C}_0+{ }^2 \mathrm{C}_1+{ }^2 \mathrm{C}_2}{2 !}+\frac{{ }^3 \mathrm{C}_0+{ }^3 \mathrm{C}_1+{ }^3 \mathrm{C}_2+{ }^3 \mathrm{C}_3}{3 !}+\ldots$
Let $\mathrm{a}=1+\frac{{ }^2 \mathrm{C}_2}{3 !}+\frac{{ }^3 \mathrm{C}_2}{4 !}+\frac{{ }^4 \mathrm{C}_2}{5 !}+\ldots$, Then $\frac{2 b}{a^2}$ is equal to.........................
$5$
$8$
$3$
$7$
If ${\left( {1 + x} \right)^n} = {c_0} + {c_1}x + {c_2}{x^2} + {c_3}{x^3} + ...... + {c_n}{x^n}$ , then the value of ${c_0} - 3{c_1} + 5{c_2} - ........ + {( - 1)^n}\,(2n + 1){c_n}$ is
If number of terms in the expansion of ${(x - 2y + 3z)^n}$ are $45$, then $n=$
If n is a positive integer and ${C_k} = {\,^n}{C_k}$, then the value of ${\sum\limits_{k = 1}^n {{k^3}\left( {\frac{{{C_k}}}{{{C_{k - 1}}}}} \right)} ^2}$ =
Co-efficient of $\alpha ^t$ in the expansion of,
$(\alpha + p)^{m - 1} + (\alpha + p)^{m - 2} (\alpha + q) + (\alpha + p)^{m - 3} (\alpha + q)^2 + ...... (\alpha + q)^{m - 1}$
where $\alpha \ne - q$ and $p \ne q$ is :
The sum of coefficients in the expansion of ${(x + 2y + 3z)^8}$ is