$\frac{{{C_0}}}{1} + \frac{{{C_2}}}{3} + \frac{{{C_4}}}{5} + \frac{{{C_6}}}{7} + ....$=
$\frac{{{2^{n + 1}}}}{{n + 1}}$
$\frac{{{2^{n + 1}} - 1}}{{n + 1}}$
$\frac{{{2^n}}}{{n + 1}}$
इनमें से कोई नहीं
${(1 + x)^n}$के प्रसार में $x$ की विषम घातों के गुणांकों का योग है
माना $(\mathrm{x}+3)^{\mathrm{n}-1}+(\mathrm{x}+3)^{\mathrm{n}-2}(\mathrm{x}+2)+$ $(x+3)^{n-3} \cdot(x+2)^2+\ldots \ldots .+(x+2)^{n-1}$ के प्रसार में $x^r$ का गुणांक $\alpha_r$ है। यदि $\sum_{\mathrm{r}=0}^{\mathrm{n}} \alpha_{\mathrm{r}}=\beta^{\mathrm{n}}-\gamma^{\mathrm{n}}, \beta, \gamma \in \mathrm{N}$ है, तो $\beta^2+\gamma^2$ बराबर है ........
यदि $C _{ x } \equiv{ }^{25} C _{ x }$ तथा $C _{0}+5 \cdot C _{1}+9 \cdot C _{2}+\ldots+$ (101). $C _{25}=2^{25} \cdot k$, तो $k$ बराबर है
यदि $\sum_{ r =0}^{25}\left\{{ }^{50} C _{ r } \cdot{ }^{50- r } C _{25- r }\right\}= K \left({ }^{50} C _{25}\right)$ हो, तो $K$ का मान होगा
यदि ${(1 + x - 2{x^2})^6} = 1 + {a_1}x + {a_2}{x^2} + .... + {a_{12}}{x^{12}}$, तब व्यंजक ${a_2} + {a_4} + {a_6} + .... + {a_{12}}$ का मान है