If the sum of the coefficients in the expansion of ${(1 - 3x + 10{x^2})^n}$ is $a$ and if the sum of the coefficients in the expansion of ${(1 + {x^2})^n}$ is $b$, then

  • A

    $a = 3b$

  • B

    $a = {b^3}$

  • C

    $b = {a^3}$

  • D

    None of these

Similar Questions

If $C_{x} \equiv^{25} C_{x}$ and $\mathrm{C}_{0}+5 \cdot \mathrm{C}_{1}+9 \cdot \mathrm{C}_{2}+\ldots .+(101) \cdot \mathrm{C}_{25}=2^{25} \cdot \mathrm{k}$ then $\mathrm{k}$ is equal to

  • [JEE MAIN 2020]

Find the coefficient of $x^{49}$ in the expansion of $(2x + 1) (2x + 3) (2x + 5)----- (2x + 99)$

The sum of the last eight coefficients in the expansion of ${(1 + x)^{15}}$ is

The coefficient of $x^9$ in the polynomial given by $\sum\limits_{r - 1}^{11} {(x + r)\,(x + r + 1)\,(x + r + 2)...\,(x + r + 9)}$ is

Let $a =$ Minimum $\{x^2 + 2x + 3, x \in R\}$ and $b = \mathop {\lim }\limits_{\theta  \to 0} \frac{{1 - \cos \theta }}{{{\theta ^2}}}$ The value of $\sum\limits_{r = 0}^n {{a^r}.{b^{n - r}}} $ is