$\frac{{{C_0}}}{1} + \frac{{{C_1}}}{2} + \frac{{{C_2}}}{3} + .... + \frac{{{C_n}}}{{n + 1}} = $
$\frac{{{2^n}}}{{n + 1}}$
$\frac{{{2^n} - 1}}{{n + 1}}$
$\frac{{{2^{n + 1}} - 1}}{{n + 1}}$
None of these
The coefficient of $x ^{301}$ in $(1+x)^{500}+x(1+x)^{499}+x^2(1+x)^{498}+\ldots . .+x^{500}$ is:
Let $(1 + x)^m = C_0 + C_1x + C_2x^2 + C_3x^3 + . . . . . +C_mx^m$, where $C_r ={}^m{C_r}$ and $A = C_1C_3 + C_2C_4+ C_3C_5 + C_4C_6 + . . . . . .. + C_{m-2}C_m$, then which is false
If ${a_r}$ is the coefficient of ${x^r}$, in the expansion of ${(1 + x + {x^2})^n}$, then ${a_1} - 2{a_2} + 3{a_3} - .... - 2n\,{a_{2n}} = $
$\left( {\left( {\begin{array}{*{20}{c}}
{21}\\
1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
1
\end{array}} \right)} \right) + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
2
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
2
\end{array}} \right)} \right)$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
3
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
3
\end{array}} \right)} \right) + \;.\;.\;.$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
{10}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
{10}
\end{array}} \right)} \right) = $
The sum of coefficients in the expansion of ${(x + 2y + 3z)^8}$ is