$\frac{{{C_0}}}{1} + \frac{{{C_1}}}{2} + \frac{{{C_2}}}{3} + .... + \frac{{{C_n}}}{{n + 1}} = $

  • A

    $\frac{{{2^n}}}{{n + 1}}$

  • B

    $\frac{{{2^n} - 1}}{{n + 1}}$

  • C

    $\frac{{{2^{n + 1}} - 1}}{{n + 1}}$

  • D

    इनमें से कोई नहीं

Similar Questions

${(1 + x + {x^2} + {x^3})^5}$ के विस्तार में $x$  की सम घातों के गुणांकों का योगफल है

$\sum_{ i =1}^{20}\left(\frac{{ }^{20} C _{ i -1}}{{ }^{20} C _{ i }+{ }^{20} C _{ i -1}}\right)^{3}=\frac{ k }{21}$, तो $k$ बराबर है 

  • [JEE MAIN 2019]

यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^n},$ तो $C_0^2 + C_1^2 + C_2^2 + C_3^2 + ...... + C_n^2$ =

संख्या  $111......1$ ($91$ बार) 

यदि ${(\alpha {x^2} - 2x + 1)^{35}}$ के प्रसार में गुणांकों का योग ${(x - \alpha y)^{35}}$ के प्रसार में गुणांकों के योग के बराबर हो, तब $\alpha $=