If system of equations $kx + 2y - z = 2,$$\left( {k - 1} \right)x + ky + z = 1,x + \left( {k - 1} \right)y + kz = 3$ has only one solution, then number of possible real value$(s)$ of $k$ is -
$0$
$1$
$2$
infinite
If the system of linear equations $2 x+3 y-z=-2$ ; $x+y+z=4$ ; $x-y+|\lambda| z=4 \lambda-4$ (where $\lambda \in R$), has no solution, then
$x + ky - z = 0,3x - ky - z = 0$ and $x - 3y + z = 0$ has non-zero solution for $k =$
The value of $'a'$ for which the system of equation $a^3x + (a + 1)^3y + (a + 2)^3 z = 0$ ; $ax + (a + 1)y + (a + 2)z = 0$ ; $x + y + z = 0$ has a non-zero solution is :-
Let $\lambda, \mu \in R$. If the system of equations
$ 3 x+5 y+\lambda z=3 $
$ 7 x+11 y-9 z=2 $
$ 97 x+155 y-189 z=\mu$
has infinitely many solutions, then $\mu+2 \lambda$ is equal to :
If the system of equations $x +y + z = 6$ ; $x + 2y + 3z= 10$ ; $x + 2y + \lambda z = 0$ has a unique solution, then $\lambda $ is not equal to