$\left| {\,\begin{array}{*{20}{c}}{b + c}& a& a\\b& {c + a}& b\\c& c& {a + b}\end{array}\,} \right| = $
$abc$
$2abc$
$3abc$
$4abc$
सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए :
$\left|\begin{array}{ccc}y+k & y & y \\ y & y+k & y \\ y & y & y+k\end{array}\right|=k^{2}(3 x+k)$
यदि $a, b$ और $c$ वास्तविक संख्याएँ हो और सारणिक
$\Delta=\left|\begin{array}{lll}b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a\end{array}\right|=0$
हो तो दर्शाइए कि या तो $a+b+c=0$ या $a=b=c$ है।
$\left| {\,\begin{array}{*{20}{c}}{a + b}&{a + 2b}&{a + 3b}\\{a + 2b}&{a + 3b}&{a + 4b}\\{a + 4b}&{a + 5b}&{a + 6b}\end{array}\,} \right| = $
यदि $a, b, c$ समांतर श्रेढ़ी में हों तो सारणिक
$\left|\begin{array}{lll}x+2 & x+3 & x+2 a \\ x+3 & x+4 & x+2 b \\ x+4 & x+5 & x+2 c\end{array}\right|$ का मान होगा|:
सारणिक $\left| {\,\begin{array}{*{20}{c}}{265}&{240}&{219}\\{240}&{225}&{198}\\{219}&{198}&{181}\end{array}\,} \right|$ का मान है