If $a,b,c$ and $d $ are complex numbers, then the determinant $\Delta = \left| {\,\begin{array}{*{20}{c}}2&{a + b + c + d}&{ab + cd}\\{a + b + c + d}&{2(a + b)(c + d)}&{ab(c + d) + cd(a + b)}\\{ab + cd}&{ab(c + d) + cd(a + d)}&{2abcd}\end{array}} \right|$is

  • A

    Dependent on $a, b, c$  and $ d$

  • B

    Independent of $a,b,c$and $d$

  • C

    Dependent on $a,c$and independent of $b,d$

  • D

    None of these

Similar Questions

If $q_1$ , $q_2$ , $q_3$ are roots of the equation $x^3 + 64$ = $0$ , then the value of $\left| {\begin{array}{*{20}{c}}
  {{q_1}}&{{q_2}}&{{q_3}} \\ 
  {{q_2}}&{{q_3}}&{{q_1}} \\ 
  {{q_3}}&{{q_1}}&{{q_2}} 
\end{array}} \right|$ is

If $\left| {\,\begin{array}{*{20}{c}}{3x - 8}&3&3\\3&{3x - 8}&3\\3&3&{3x - 8}\end{array}\,} \right| = 0,$ then the values of $x$ are

In a square matrix $A$ of order $3, a_{i i}'s$ are the sum of the roots of the equation $x^2 - (a + b)x + ab= 0$; $a_{i , i + 1}'s$ are the product of the roots, $a_{i , i - 1}'s$ are all unity and the rest of the elements are all zero. The value of the det. $(A)$ is equal to

For $\alpha, \beta \in \mathrm{R}$ and a natural number $\mathrm{n}$, let

$A_r=\left|\begin{array}{ccc}r & 1 & \frac{n^2}{2}+\alpha \\ 2 r & 2 & n^2-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$. Then $2 A_{10}-A_8$

  • [JEE MAIN 2024]

If $\left| {\,\begin{array}{*{20}{c}}{x + 1}&3&5\\2&{x + 2}&5\\2&3&{x + 4}\end{array}\,} \right| = 0$, then $ x =$