3 and 4 .Determinants and Matrices
hard

If the system of equations $x + y+  z = 5$ ; $x + 2y + 3z = 9$ ; $x + 3y + \alpha z = \beta $ has infinitely many solutions, then $\beta  - \alpha $ equals

A

$21$

B

$8$

C

$18$

D

$5$

(JEE MAIN-2019)

Solution

$x + y – z = 5$

$x + 2y + 3z = 9,$

$x + 3y + \alpha z = \beta $

$D = \left| {\begin{array}{*{20}{c}}
1&1&1\\
1&2&3\\
1&3&0
\end{array}} \right| = 0 \Rightarrow \left( {2\alpha  – 9} \right) + \left( {3 – \alpha } \right) + \left( {3 – 2} \right) = 0 \Rightarrow \alpha  = 5$

Now, ${D_3} = \left| {\begin{array}{*{20}{c}}
1&1&5\\
1&2&9\\
1&3&\beta 
\end{array}} \right| = 0 \Rightarrow 2\beta  – 27 + 9\beta  – 5\left( {3 – 2} \right) = 0 \Rightarrow \beta  = 13$

$ \Rightarrow $ at $\alpha  = 5,b = 13$ above $3$ planes from common line

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.