$\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + y}&1\\1&1&{1 + z}\end{array}\,} \right| = $
$xyz\left( {1 + \frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)$
$xyz$
$1 + \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$
$\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$
Prove that $\left|\begin{array}{ccc}a & a+b & a+b+c \\ 2 a & 3 a+2 b & 4 a+3 b+2 c \\ 3 a & 6 a+3 b & 10 a+6 b+3 c\end{array}\right|=a^{3}$
At what value of $x,$ will $\left| {\,\begin{array}{*{20}{c}}{x + {\omega ^2}}&\omega &1\\\omega &{{\omega ^2}}&{1 + x}\\1&{x + \omega }&{{\omega ^2}}\end{array}\,} \right| = 0$
If $A =$ $\left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]$ (where $bc \ne 0$) satisfies the equations $x^2 + k = 0$, then
If $\left| {\,\begin{array}{*{20}{c}}{x + 1}&{x + 2}&{x + 3}\\{x + 2}&{x + 3}&{x + 4}\\{x + a}&{x + b}&{x + c}\end{array}\,} \right| = 0$, then $a,b,c$ are in
Let $\alpha $, $\beta$ $\gamma$, $\delta$ are distinct imaginary roots of
$z^5=1$ then value of $\left| {\begin{array}{*{20}{c}}
{{e^\alpha }}&{{e^{2\alpha }}}&{{e^{3\alpha + 1}}}&{ - {e^{ - \delta }}} \\
{{e^\beta }}&{{e^{2\beta }}}&{{e^{3\beta + 1}}}&{ - {e^{ - \delta }}} \\
{{e^\gamma }}&{{e^{2\gamma }}}&{{e^{3\gamma + 1}}}&{ - {e^{ - \delta }}}
\end{array}} \right|$