3 and 4 .Determinants and Matrices
hard

If the system of linear equation $x + 2ay + az = 0,$ $x + 3by + bz = 0,$ $x + 4cy + cz = 0$  has a non zero solution, then $a,b,c$

A

Are in A.P.

B

Are in G. P.

C

Are in H. P.

D

Satisfy $a + 2b + 3c = 0$

(AIEEE-2003)

Solution

(c) $\left| {\,\begin{array}{*{20}{c}}1&{2a}&a\\1&{3b}&b\\1&{4c}&c\end{array}\,} \right|\, = 0\,$, $[{C_2} \to {C_2} – 2{C_3}]$

==>$\left| {\,\begin{array}{*{20}{c}}1&0&a\\1&b&b\\1&{2c}&c\end{array}\,} \right| = 0$, $[{R_3} \to {R_3} – {R_2},\,{R_2} \to {R_2} – {R_1}]$

==> $\left| {\,\begin{array}{*{20}{c}}1&0&a\\0&b&{b – a}\\0&{2c – b}&{c – b}\end{array}\,} \right|\, = 0$ ; $b(c – b) – (b – a)\,(2c – b) = 0$

On simplification, $\frac{2}{b} = \frac{1}{a} + \frac{1}{c}$

$\therefore$ $ a, b, c$  are in Harmonic progression.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.