$\left| {\,\begin{array}{*{20}{c}}x&4&{y + z}\\y&4&{z + x}\\z&4&{x + y}\end{array}\,} \right| = $
$4$
$x + y + z$
$xyz$
$0$
ધારો કે $A_1, A_2, A_3$ એ, સમાન સામાન્ય તફાવત $d$ વાળી ત્રણ સમાંતર શ્રેણીઓ છે, જેના પ્રથમ પદો અનુક્રમે $A , A +1, A +2$ છે. ધારો કે $A _1, A _2, A _3$ ના $7$મા, $9$મા, $17$મા પદો અનુક્રમે $a, b, c$ છે, જ્યાં $\left|\begin{array}{ccc}a & 7 & 1 \\ 2 b & 17 & 1 \\ c & 17 & 1\end{array}\right|+70=0.$ જો $a=29$ હોય તો, જેનું પ્રથમ પદ $c-a-b$ હોય અને સામાન્ય તફાવત $\frac{d}{12}$ હોય તેવી સમાંતર શ્રેણીના પ્રથમ $20$ પદોનો સરવાળો $...........$ છે.
$x$ નું મૂલ્ય શોધો : $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$
જો સમીકરણ સંહિત
$ 2 x+7 y+\lambda z=3 $
$ 3 x+2 y+5 z=4 $
$ x+\mu y+32 z=-1$
ને અસંખ્ય ઉકેલો હોય, તો $(\lambda-\mu)=$...........
નીચે આપેલાં શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ શોધો : $(2,7),(1,1),(10,8)$
$\lambda$ અને $\mu$ ની કિમંત મેળવો કે જેથી સમીકરણ સંહતિ $x+y+z=6,3 x+5 y+5 z=26, x+2 y+\lambda z=\mu$ નો ઉકેલગણ ખાલીગણ થાય.