$k$ ની કઈ કિમંત માટે આપેલ સમીકરણોનો શૂન્યતર ઉકેલ મળે ?
$x + ky + 3z = 0$ ; $3x + ky + 2z = 0$ ; $2x + 3y + 4z = 0$
$\frac {11}{14}$
$-\frac {33}{2}$
$\frac {33}{20}$
$\frac {33}{2}$
જો ${a_1},{a_2},{a_3}.....{a_n}....$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ ની કિમંત મેળવો.
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}1&1&x\\{p + 1}&{p + 1}&{p + x}\\3&{x + 1}&{x + 2}\end{array}\,} \right| = 0$ નો ઉકેલ મેળવો.
જો $\alpha+\beta+\gamma=2 \pi$ તો સમીકરણ સંહતિ $x+(\cos \gamma) y+(\cos \beta) z=0$ ; $(\cos \gamma) x+y+(\cos \alpha) z=0$ ; $(\cos \beta) x+(\cos \alpha) y+z=0$ નો ઉકેલગણ . . . ..
સુરેખ સમીકરણ સંહતિ $x + y + z = 1;x + ay + z = 1;ax + by + z = 0$ ને ઉકેલ ન હોય તે માટેની $'b'$ ની ભિન્ન કિંમતોનો ગણ જો $S$ હોય તો , $S$ એ . ..
$\left| {\,\begin{array}{*{20}{c}}a&b&{a - b}\\b&c&{b - c}\\2&1&0\end{array}\,} \right|=0$ હોય તો $a,b,c$ એ . . . શ્રેણીમાં છે.