3 and 4 .Determinants and Matrices
hard

$\left| {\,\begin{array}{*{20}{c}}{{a^2} + {x^2}}&{ab}&{ca}\\{ab}&{{b^2} + {x^2}}&{bc}\\{ca}&{bc}&{{c^2} + {x^2}}\end{array}\,} \right|$ is divisor of

A

${a^2}$

B

${b^2}$

C

${c^2}$

D

${x^2}$

Solution

(d) $\left| {\,\begin{array}{*{20}{c}}{{a^2} + {x^2}}&{ab}&{ca}\\{ab}&{{b^2} + {x^2}}&{bc}\\{ca}&{bc}&{{c^2} + {x^2}}\end{array}\,} \right|$

Multiply ${C_1},\,{C_2},{C_3}$ by $a,\,\,b,\,c$ respectively and hence divide by $abc$

 $\Delta = \frac{1}{{abc}}\,\left| {\,\begin{array}{*{20}{c}}{a({a^2} + {x^2})}&{a{b^2}}&{{c^2}a}\\{{a^2}b}&{b({b^2} + {x^2})}&{b{c^2}}\\{c{a^2}}&{{b^2}c}&{c({c^2} + {x^2})}\end{array}\,} \right|$

Now take out $a, b $ and $c $ common from ${R_1},\,{R_2}$ and ${R_3}$,

 $\Delta = \left| {\,\begin{array}{*{20}{c}}{{a^2} + {x^2}}&{{b^2}}&{{c^2}}\\{{a^2}}&{{b^2} + {x^2}}&{{c^2}}\\{{a^2}}&{{b^2}}&{{c^2} + {x^2}}\end{array}\,} \right|$

Now applying ${C_1} \to {C_1} + {C_2} + {C_3}$

$ \Rightarrow $ $\Delta = ({a^2} + {b^2} + {c^2} + {x^2})\,\left| {\,\begin{array}{*{20}{c}}1&{{b^2}}&{{c^2}}\\1&{{b^2} + {x^2}}&{{c^2}}\\1&{{b^2}}&{{c^2} + {x^2}}\end{array}\,} \right|$

==> $\Delta = {x^4}({a^2} + {b^2} + {c^2} + {x^2})$

Hence, it is divisible by ${x^2}$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.