- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
If $a, b, c$ are all different and $\left| {\begin{array}{*{20}{c}}a&{{a^3}}&{{a^4}\, - \,1}\\b&{{b^3}}&{{b^4}\, - \,1}\\c&{{c^3}}&{{c^4}\, - \,1}\end{array}} \right|$ $= 0$ , then :
A$abc (ab + bc + ca) = a + b + c$
B$(a + b + c) (ab + bc + ca) = abc$
C$abc (a + b + c) = ab + bc + ca$
Dnone of these
Solution
Split the determinant into $2\, \&$ then evaluate $R_1 \rightarrow R_1 – R_2 \, \& \, R_2 \rightarrow R_2 – R_3$
Standard 12
Mathematics