$\left| {\,\begin{array}{*{20}{c}}{{{({a^x} + {a^{ - x}})}^2}}&{{{({a^x} - {a^{ - x}})}^2}}&1\\{{{({b^x} + {b^{ - x}})}^2}}&{{{({b^x} - {b^{ - x}})}^2}}&1\\{{{({c^x} + {c^{ - x}})}^2}}&{{{({c^x} - {c^{ - x}})}^2}}&1\end{array}\,} \right| = $

  • A

    $0$

  • B

    $2abc$

  • C

    ${a^2}{b^2}{c^2}$

  • D

    એકપણ નહી.

Similar Questions

$\Delta ABC$ માં , જો $\left| {\,\begin{array}{*{20}{c}}1&a&b\\1&c&a\\1&b&c\end{array}\,} \right| = 0$, તો ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C = $

જો $\omega = - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}$. તો $\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{ - 1 - {\omega ^2}}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^4}}\end{array}\,} \right|= . . . $

  • [IIT 2002]

સમીકરણની સંહતિ ${x_1} + 2{x_2} + 3{x_3} = a2{x_1} + 3{x_2} + {x_3} = $ $b3{x_1} + {x_2} + 2{x_3} = c$ ને . . . ઉકેલ છે.

જો રેખીય સમીકરણો  $2x + 2y + 3z = a$ ; $3x - y + 5z = b$ ; $x - 3y + 2z = c$ કે જ્યાં $a, b, c$ એ શૂન્યતર વાસ્તવિક સંખ્યા  છે  તો સમીકરણોને એક કરતાં ઉકેલ માટે  . . ..

  • [JEE MAIN 2019]

જો રેખીય સમીકરણો $x + y+  z = 5$ ; $x + 2y + 3z = 9$ ; $x + 3y + \alpha z = \beta $ એ અનંત ઉકેલ ધરાવે છે તો  $\beta  - \alpha $ મેળવો.

  • [JEE MAIN 2019]