$x + ky - z = 0,3x - ky - z = 0$ and $x - 3y + z = 0$ has non-zero solution for $k =$

  • [IIT 1988]
  • A

    $-1$

  • B

    $0$

  • C

    $1$

  • D

    $2$

Similar Questions

Consider system of equations in $x$ , $y$ and $z$

$12x + by + cz = 0$ ;   $ax + 24y + cz = 0$  ;   $ax + by + 36z = 0$ .

(where $a$ , $b$ , $c$ are real numbers, $a \ne 12$ , $b \ne 24$ , $c \ne 36$ ).

If system of equation has solution and $z \ne 0$, then value of  $\frac{1}{{a - 12}} + \frac{2}{{b - 24}} + \frac{3}{{c - 36}}$ is

If $A, B, C$  be the angles of a triangle, then $\left| {\,\begin{array}{*{20}{c}}{ - 1}&{\cos C}&{\cos B}\\{\cos C}&{ - 1}&{\cos A}\\{\cos B}&{\cos A}&{ - 1}\end{array}\,} \right| = $

If $a \ne p,b \ne q,c \ne r$ and $\left| {\,\begin{array}{*{20}{c}}p&b&c\\{p + a}&{q + b}&{2c}\\a&b&r\end{array}\,} \right|$ =$ 0$, then $\frac{p}{{p - a}} + \frac{q}{{q - b}} + \frac{r}{{r - c}} = $

Let $\alpha, \beta$ and $\gamma$ be real numbers. consider the following system of linear equations

$x+2 y+z=7$

$x+\alpha z=11$

$2 x-3 y+\beta z=\gamma$

Match each entry in List - $I$ to the correct entries in List-$II$

List - $I$ List - $II$
($P$) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma=28$, then the system has ($1$) a unique solution
($Q$) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma \neq 28$, then the system has ($2$) no solution

($R$) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma \neq 28$,

then the system has

($3$) infinitely many solutions
($S$) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma=28$, then the system has ($4$) $x=11, y=-2$ and $z=0$ as a solution
  ($5$) $x=-15, y=4$ and $z=0$ as a solution

Then the system has

  • [IIT 2023]

If $\omega $ is an imaginary root of unity, then the value of $\left| {\,\begin{array}{*{20}{c}}a&{b{\omega ^2}}&{a\omega }\\{b\omega }&c&{b{\omega ^2}}\\{c{\omega ^2}}&{a\omega }&c\end{array}\,} \right|$ is