$k$ के किस मान के लिये समीकरण निकाय $x + ky - z = 0,3x - ky - z = 0$ व $x - 3y + z = 0$ का एक अशून्य हल होगा
$-1$
$0$
$1$
$2$
माना रैखिक समीकरण निकाय $x+y+k z=2$ ; $2 x+3 y-z=1$ ; $3 x+4 y+2 z=k$ के अनंत हल है, तो निकाय $( k +1) x +(2 k -1) y =7$ ; $(2 k +1) x +( k +5) y =10$
सारणिक $\left| {\,\begin{array}{*{20}{c}}1&{\cos (\alpha - \beta )}&{\cos \alpha }\\{\cos (\alpha - \beta )}&1&{\cos \beta }\\{\cos \alpha }&{\cos \beta }&1\end{array}\,} \right|$ का मान होगा
माना $A =\left[\begin{array}{ccc}2 & b & 1 \\ b & b ^{2}+1 & b \\ 1 & b & 2\end{array}\right]$ जहाँ $b > 0$ है। तब $\frac{\operatorname{det}( A )}{ b }$ का न्यूनतम मान होगा
माना $[\lambda]$ महत्तम पूर्णांक $\leq \lambda$ हैं। $\lambda$ के सभी मानों, जिनके लिए रैखिक समीकरण निकाय $x + y + z =4$, $3 x +2 y +5 z =3,9 x +4 y +(28+[\lambda]) z =[\lambda]$ का हल है, का समुच्चय है
रैखिक समीकरणों का निकाय ${a_1}x + {b_1}y + {c_1}z + {d_1} = 0$, ${a_2}x + {b_2}y + {c_2}z + {d_2} = 0$ तथा ${a_3}x + {b_3}y + {c_3}z + {d_3} = 0$ पर विचार करते है। माना सारणिक $\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right|$,$\Delta (a,b,c)$ द्वारा प्रदर्शित करते हैं यदि $\Delta (a,b,c) \ne 0$, तब समीकरणों के अद्वितीय हल के लिये $x$ का मान है