3 and 4 .Determinants and Matrices
medium

किसी गुणोत्तर श्रेणी के $p$ वें, $q$ वें तथा $ r$ वें पद क्रमश: $l,m,n$ हो तो $\left| {\,\begin{array}{*{20}{c}}{\log l}&{p\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\\{\log m}&{q\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\\{\log n}&{r\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\end{array}\,} \right|$ का मान होगा

A

$-1$

B

$2$

C

$1$

D

$0$

(AIEEE-2002)

Solution

माना गुणोत्तर श्रेणी का प्रथम पद $A$ तथा सार्वानुपात $R$  हो, तब

$l = A{R^{p – 1}} \Rightarrow \log l = \log A + (p – 1)\log R$  …..$(i)$

$m = A{R^{q – 1}} \Rightarrow \log m = \log A + (q – 1)\log R$          …..$(ii)$

$n = A{R^{r – 1}} \Rightarrow \log n = \log A + (r – 1)\log R$ …..$(iii)$

$(i), (ii)$ तथा $(iii)$ को क्रमश: $(q – r),\,(r – p)\,$ तथा $(p – q)$ से गुणा करके जोड़ने पर हम पाते हैं कि

$\log l\,(q – r) + \log m(r – p) + \log n(p – q) = 0$

$\therefore \,\Delta  = 0$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.