The number of values of $\theta \in (0,\pi)$ for which the system of linear equations
$x + 3y + 7z = 0$
$-x + 4y + 7z = 0$
$(sin\,3\theta )x + (cos\,2\theta )y + 2z = 0$ has a non-trivial solution, is
$3$
$2$
$4$
$1$
The value of $\left| {\,\begin{array}{*{20}{c}}1&{\cos (\beta - \alpha )}&{\cos (\gamma - \alpha )}\\{\cos (\alpha - \beta )}&1&{\cos (\gamma - \beta )}\\{\cos (\alpha - \gamma )}&{\cos (\beta - \gamma )}&1\end{array}} \right|$ is
Which of the following is correct?
If $a, b, c$ are non-zero real numbers and if the system of equations $(a - 1 )x = y + z,$ $(b - 1 )y = z + x ,$ $(c - 1 )z= x + y,$ has a non-trivial solution, then $ab + bc + ca$ equals
If $\left| {\,\begin{array}{*{20}{c}}{1 + ax}&{1 + bx}&{1 + cx}\\{1 + {a_1}x}&{1 + {b_1}x}&{1 + {c_1}x}\\{1 + {a_2}x}&{1 + {b_2}x}&{1 + {c_2}x}\end{array}\,} \right|,$ $ = {A_0} + {A_1}x + {A_2}{x^2} + {A_3}{x^3}$ then ${A_1}$ is equal to
If ${\Delta _1} = \left| {\begin{array}{*{20}{c}}
x&{\sin \,\theta }&{\cos \,\theta } \\
{\sin \,\theta }&{ - x}&1 \\
{\cos \,\theta }&1&x
\end{array}} \right|$ and ${\Delta _2} = \left| {\begin{array}{*{20}{c}}
x&{\sin \,2\theta }&{\cos \,\,2\theta } \\
{\sin \,2\theta }&{ - x}&1 \\
{\cos \,\,2\theta }&1&x
\end{array}} \right|$, $x \ne 0$ ; then for all $\theta \in \left( {0,\frac{\pi }{2}} \right)$