3 and 4 .Determinants and Matrices
hard

$S$ denote the set of all real values of $\lambda$ such that the system of equations  $\lambda x + y + z =1$ ; $x +\lambda y + z =1$ ; $x + y +\lambda z =1$ is inconsistent, then $\sum_{\lambda \in S}\left(|\lambda|^2+|\lambda|\right)$ is equal to

A

$2$

B

$12$

C

$4$

D

$6$

(JEE MAIN-2023)

Solution

$\left|\begin{array}{lll}\lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda\end{array}\right|=0$

$(\lambda+2)\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda\end{array}\right|=0$

$(\lambda+2)\left[1\left(\lambda^2-1\right)-1(\lambda-1)+(1-\lambda)\right]=0$

$(\lambda+2)\left[\left(\lambda^2-2 \lambda+1\right)=0\right.$

$(\lambda+2)(\lambda-1)^2=0 \Rightarrow \lambda=-2, \lambda=1$

at $\lambda=1$ system has infinite solution, for inconsistent $\lambda=-2$

so $\sum\left(|-2|^2+|-2|\right)=6$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.