$\frac{1}{{\sin 10^\circ }} - \frac{{\sqrt 3 }}{{\cos 10^\circ }} =$
$0$
$1$
$2$
$4$
$\sin {20^o}\,\sin {40^o}\,\sin {60^o}\,\sin {80^o} = $
If ${\cos ^6}\alpha + {\sin ^6}\alpha + K\,{\sin ^2}2\alpha = 1,$ then $K =$
The value of $cot\, x + cot\, (60^o + x) + cot\, (120^o + x)$ is equal to :
The value of $\sin 600^\circ \cos 330^\circ + \cos 120^\circ \sin 150^\circ $ is
If ${\tan ^2}\theta = 2{\tan ^2}\phi + 1,$ then $\cos 2\theta + {\sin ^2}\phi $ equals