3.Trigonometrical Ratios, Functions and Identities
easy

If $\sin \alpha = \frac{{ - 3}}{5},$ where $\pi < \alpha < \frac{{3\pi }}{2},$ then $\cos \frac{1}{2}\alpha = $

A

$\frac{{ - 1}}{{\sqrt {10} }}$

B

$\frac{1}{{\sqrt {10} }}$

C

$\frac{3}{{\sqrt {10} }}$

D

$\frac{{ - 3}}{{\sqrt {10} }}$

Solution

(a) $\cos (\alpha /2) = – \sqrt {\frac{{1 + \cos \alpha }}{2}} $

$\cos \alpha = – \sqrt {1 – {{\sin }^2}\alpha } $     [$\because  \alpha$ lies in $III^{rd}$ Quadrant]

$ = – \sqrt {1 – \frac{9}{{25}}} = – \frac{4}{5}$

$\therefore \,\,\,\cos (\alpha /2) = – \sqrt {\frac{{1 – \frac{4}{5}}}{2}} = – \frac{1}{{\sqrt {10} }}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.