If $\sin \alpha = \frac{{ - 3}}{5},$ where $\pi < \alpha < \frac{{3\pi }}{2},$ then $\cos \frac{1}{2}\alpha = $

  • A

    $\frac{{ - 1}}{{\sqrt {10} }}$

  • B

    $\frac{1}{{\sqrt {10} }}$

  • C

    $\frac{3}{{\sqrt {10} }}$

  • D

    $\frac{{ - 3}}{{\sqrt {10} }}$

Similar Questions

If $\alpha + \beta - \gamma = \pi ,$ then ${\sin ^2}\alpha + {\sin ^2}\beta - {\sin ^2}\gamma = $

  • [IIT 1980]

If $\cos \left( {\alpha + \beta } \right) = \frac{4}{5}$ and $\sin \left( {\alpha - \beta } \right) = \frac{5}{{13}}$,where $0 \le \alpha ,\beta \le \frac{\pi }{4}$ . Then $\tan 2\alpha =$ 

  • [IIT 1979]

${\sin ^4}\frac{\pi }{8} + {\sin ^4}\frac{{3\pi }}{8} + {\sin ^4}\frac{{5\pi }}{8} + {\sin ^4}\frac{{7\pi }}{8} = $

If $A + B + C = {270^o},$ then $\cos \,2A + \cos 2B + \cos 2C + 4\sin A\,\sin B\,\sin C = $

If ${\rm{cosec}}\theta = \frac{{p + q}}{{p - q}},$ then $\cot \,\left( {\frac{\pi }{4} + \frac{\theta }{2}} \right) = $