$\tan {3^o} + 2\tan {6^o} + 4\tan {12^o} + 8\cot {24^o} = \cot {\theta ^o}$ then
$cot (10\ \theta )^o =1$
$cot (15\ \theta )^o =1$
$\cot {\theta ^o} = 0$
$\cot {\left( {15\ \theta } \right)^o} = \sqrt 3$
$\frac{{\sec \,8\theta - 1}}{{\sec \,4\theta - 1}}$ is equal to
$cot 5^o$ -$tan5^o$ -$2$ $tan10^o$ -$4$ $tan 20^o$ -$8$ $cot40^o$ is equal to
The expression $\frac{{{{\tan }^2}20^\circ - {{\sin }^2}20^\circ }}{{{{\tan }^2}20^\circ \,\cdot\,{{\sin }^2}20^\circ }}$ simplifies to
If $\sin \left( {x + \frac{{4\pi }}{9}} \right) = a;\,$ $\frac{\pi }{9}\, < \,x\, < \,\frac{\pi }{3},$ then $\cos \left( {x + \frac{{7\pi }}{9}} \right)$ equals :-
$\sin {20^o}\,\sin {40^o}\,\sin {60^o}\,\sin {80^o} = $