$\tan {3^o} + 2\tan {6^o} + 4\tan {12^o} + 8\cot {24^o} = \cot {\theta ^o}$ then
$cot (10\ \theta )^o =1$
$cot (15\ \theta )^o =1$
$\cot {\theta ^o} = 0$
$\cot {\left( {15\ \theta } \right)^o} = \sqrt 3$
If $\frac{{\cos x}}{a} = \frac{{\cos (x + \theta )}}{b} = \frac{{\cos (x + 2\theta )}}{c} = \frac{{\cos (x + 3\theta )}}{d} \, ,$ then $\left( {\frac{{a + c}}{{b + d}}} \right)$ is equal to :-
If $A, B, C$ are acute positive angles such that $A + B + C = \pi $ and $\cot A\,\cot \,B\,\cot \,C = K,$ then
The value of $\sin \frac{\pi }{{14}}\sin \frac{{3\pi }}{{14}}\sin \frac{{5\pi }}{{14}}\sin \frac{{7\pi }}{{14}}\sin \frac{{9\pi }}{{14}}\sin \frac{{11\pi }}{{14}}\sin \frac{{13\pi }}{{14}}$ is equal to
If $A + B + C = \frac{\pi }{2}$ ,then value of $tanA\,\, tanB + tanB\,\, tanC + tanC\,\, tanA$ is
$\frac{{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta }}{{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta }} = $