3.Trigonometrical Ratios, Functions and Identities
easy

$\cos \frac{\pi }{5}\cos \frac{{2\pi }}{5}\cos \frac{{4\pi }}{5}\cos \frac{{8\pi }}{5} = $

A

$1/16$

B

$0$

C

$-1/8$

D

$-1/16$

Solution

(d) $\cos \frac{\pi }{5}\cos \frac{{2\pi }}{5}\cos \frac{{4\pi }}{5}\cos \frac{{8\pi }}{5}$

$ = \frac{{\sin \frac{{{2^4}\pi }}{5}}}{{{2^4}\sin \frac{\pi }{5}}} = \frac{{\sin \frac{{16\pi }}{5}}}{{16\,\sin \frac{\pi }{5}}} $

$= \frac{{\sin \,\left( {3\pi + \frac{\pi }{5}} \right)}}{{16\,\sin \frac{\pi }{5}}}$

$ = \frac{{ – \sin \frac{\pi }{5}}}{{16\,\sin \frac{\pi }{5}}} = – \frac{1}{{16}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.