$\cos \frac{\pi }{5}\cos \frac{{2\pi }}{5}\cos \frac{{4\pi }}{5}\cos \frac{{8\pi }}{5} = $

  • A

    $1/16$

  • B

    $0$

  • C

    $-1/8$

  • D

    $-1/16$

Similar Questions

$\tan 3A - \tan 2A - \tan A = $

If $\tan \frac{\theta }{2} = t,$then $\frac{{1 - {t^2}}}{{1 + {t^2}}}$is equal to

In a triangle $\tan A + \tan B + \tan C = 6$ and $\tan A\tan B = 2,$ then the values of $\tan A,\,\,\tan B$ and $\tan C$ are

If $x\, sin \theta = y\, sin \, \left( {\theta \,\, + \,\,\frac{{2\,\pi }}{3}} \right) = z\, sin \, \left( {\theta \,\, + \,\,\frac{{4\,\pi }}{3}} \right)$ then :

The expression $\frac{{{{\tan }^2}20^\circ  - {{\sin }^2}20^\circ }}{{{{\tan }^2}20^\circ \,\cdot\,{{\sin }^2}20^\circ }}$ simplifies to