$\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ = $

  • A

    $1/2$

  • B

    $2$

  • C

    $4$

  • D

    $8$

Similar Questions

If $\alpha$, $\beta$,$\gamma$ are positive number such that $\alpha + \beta = \pi$  and $\beta  + \gamma = \alpha$, then $tan\ \alpha$ is equal to - (where $\gamma  \ne n\pi ,n \in I$ )

If $\cos 3\theta = \alpha \cos \theta + \beta {\cos ^3}\theta ,$ then $(\alpha ,\beta ) = $

$4 \,\,sin5^o \,\,sin55^o \,\,sin65^o$ has the values equal to

If $\sin A + \cos A = \sqrt 2 ,$ then ${\cos ^2}A = $

$\frac{{\tan \,\,\left( {x\,\, - \,\,{\textstyle{\pi  \over 2}}} \right)\,\,.\,\,\cos \,\,\left( {{\textstyle{{3\pi } \over 2}}\,\, + \,\,x} \right)\,\, - \,\,{{\sin }^3}\,\left( {{\textstyle{{7\pi } \over 2}}\,\, - \,\,x} \right)}}{{\cos \,\,\left( {x\,\, - \,\,{\textstyle{\pi  \over 2}}} \right)\,\,.\,\,\tan \,\,\left( {{\textstyle{{3\pi } \over 2}}\,\, + \,\,x} \right)}}$ when simplified reduces to :